The housefly (Musca domestica) is a fly of the suborder Cyclorrhapha. It is believed to have evolved in the Cenozoic era, possibly in the Middle East, and has spread all over the world as a commensal of humans. It is the most common fly species found in houses. Adults are grey to black with four dark longitudinal lines on the thorax, slightly hairy bodies and a single pair of membranous wings. They have red eyes, set further apart in the slightly larger female.
The female housefly usually mates only once and stores the sperm for later use. She lays batches of about 100 eggs on decaying organic matter such as food waste, carrion or faeces. These soon hatch into legless white larvae, maggots. After 2 to 5 days of development, these metamorphose into reddish-brown pupae, about 8 mm (0.3 in) long. Adult flies normally live for 2 to 4 weeks, but can hibernate during the winter. The adults feed on a variety of liquid or semi-liquid substances, as well as solid materials which have been softened by their saliva. They can carry pathogens on their bodies and in their faeces, contaminate food and contribute to the transfer of food-borne illnesses. In numbers, they can be physically annoying and for these reasons they are considered pests.
Houseflies have been used in the laboratory in research into ageing and sex determination. Flies appear in literature from Ancient Greek mythology and Aesop's The Impertinent Insect onwards. Authors sometimes choose the fly to speak of the brevity of life, as in William Blake's 1794 poem The Fly, which deals with mortality subject to uncontrollable circumstances.
Video Housefly
1 Description
Adult houseflies are usually 6 to 7 millimetres (0.24 to 0.28 inches) long with a wingspan of 13 to 15 millimetres (0.5 to 0.6 inches). The females tend to be larger winged than males while males have relatively longer legs. Females tend to vary more in size and there is geographic variation with larger individuals in higher latitudes. The head is strongly convex in front and flat and slightly conical behind. The pair of large compound eyes almost touch in the male but are more widely separated in the female. There are three simple eyes (ocelli) and a pair of short antennae. Flies process visual information around seven times more quickly than do humans, enabling them to identify and avoid attempts to catch or swat them, since they effectively see the human's movements in slow motion with their higher flicker fusion rate.
The mouthparts are specially adapted for a liquid diet; the mandibles and maxillae are reduced and non-functional and the other mouthparts form a retractable, flexible proboscis with an enlarged fleshy tip, the labellum. This is a sponge-like structure that is characterised by many grooves, called pseudotracheae, which suck up fluids by capillary action. It is also used to distribute saliva to soften solid foods or collect loose particles. Houseflies have chemoreceptors, organs of taste, on the tarsi of their legs, so they can identify foods such as sugars by walking over them. Flies are often seen cleaning their legs by rubbing them together, enabling the chemoreceptors to taste afresh whatever they walk on next. At the end of each leg is a pair of claws, and below them are two adhesive pads, pulvilli, enabling the fly to walk up smooth walls and ceilings using Van der Waals forces. The claws help the fly to unstick the foot for the next step. Flies walk with a common gait on horizontal and vertical surfaces with three legs in contact with the surface and three in movement. On inverted surfaces, they alter the gait to keep four feet stuck to the surface. Flies land on a ceiling by flying straight towards it; just before landing they make a half roll and point all six legs at the surface, absorbing the shock with the front legs and sticking a moment later with the other four also.
The thorax is a shade of gray, sometimes even black, with four dark longitudinal bands of even width on the dorsal surface. The whole body is covered with short hairs. Like other Diptera, houseflies have only one pair of wings; what would be the hind pair is reduced to small halteres that aid in flight stability. The wings are translucent with a yellowish tinge at their base. Characteristically, the medial vein (M1+2 or fourth long vein) shows a sharp upward bend. Each wing has a lobe at the back, the calypter, covering the haltere. The abdomen is gray or yellowish with a dark stripe and irregular dark markings at the side. It has ten segments which bear spiracles for respiration. In males, the ninth segment bears a pair of claspers for copulation, and the tenth bears anal cerci in both sexes.
A variety of species around the world appear similar to the housefly, such as the lesser house fly, Fannia canicularis; the stable fly, Stomoxys calcitrans; and other members of the Musca genus such as M. vetustissima, the Australian bush fly and several closely related taxa that include M. primitiva, M. shanghaiensis, M. violacea and M. varensis. The systematic identification of species may require the use of region specific taxonomic keys and can require dissections of the male reproductive parts for confirmation.
Maps Housefly
2 Distribution
The housefly is probably the insect with the widest distribution in the world; it is largely associated with man and has accompanied him around the globe. It is present in the Arctic Circle as well as in the tropics, where it is abundant. It is present in all populated parts of Europe, Asia, Australasia and the Americas.
3 Evolution and taxonomy
Even though the order of flies (Diptera) is much older, true houseflies are believed to have evolved in the beginning of the Cenozoic era. The housefly's superfamily, Muscoidea, is most closely related to the Oestroidea (blow flies and allies), and more distantly to the Hippoboscoidea (louse flies and allies). They are thought to have originated in the southern Palearctic region, particularly the Middle East. Because of their close, commensal relationship with humans, they probably owe their worldwide dispersal to co-migration with humans.
The housefly was first described as Musca domestica in 1758 based on the common European specimens by the Swedish botanist and zoologist Carl Linnaeus in his Systema naturae, and continues to be classified under that name. A more detailed description was given in 1776 by the Danish entomologist Johan Christian Fabricius in his Genera Insectorum.
4 Life cycle
Each female housefly can lay up to 500 eggs in a lifetime, in several batches of about 75 to 150. The eggs are white and are about 1.2 mm (0.05 in) in length, and they are deposited by the fly in a suitable place, usually dead and decaying organic matter, such as food waste, carrion, or faeces. Within a day, larvae (maggots) hatch from the eggs; they live and feed where they were laid. They are pale-whitish, 3 to 9 mm (0.12 to 0.35 in) long, thinner at the mouth end, and legless. Larval development takes from two weeks, under optimal conditions, to thirty days or more in cooler conditions. The larvae avoid light; the interior of heaps of animal manure provide nutrient-rich sites and ideal growing conditions, warm, moist and dark.
At the end of their fourth instar, the larvae crawl to a dry, cool place and transform into pupae. The pupal case is cylindrical with rounded ends, about 1.2 mm (0.05 in) long, and formed from the last shed larval skin. It is yellowish at first, darkening through red and brown to nearly black as it ages. Pupae complete their development in from two to six days at 35 °C (95 °F) but may take twenty days or more at 14 °C (57 °F).
When metamorphosis is complete, the adult fly emerges from the pupa. To do this, it uses the ptilinum, an eversible pouch on its head, to tear open the end of the pupal case. The adult housefly lives for from two weeks to a month in the wild, or longer in benign laboratory conditions. Having emerged from the pupa, it ceases to grow; a small fly is not necessarily a young fly, but is instead the result of getting insufficient food during the larval stage.
Male houseflies are sexually mature after 16 hours and females after 24. Females produce a pheromone, (Z)-9-Tricosene (muscalure). This cuticular hydrocarbon is not released into the air and males sense them only on contact with females; it has found use as in pest control, for luring males to fly traps. The male initiates the mating by bumping into the female, in the air or on the ground, known as a "strike". He climbs on to her thorax, and if she is receptive a courtship period follows, in which the female vibrates her wings and the male strokes her head. The male then reverses onto her abdomen and the female pushes her ovipositor into his genital opening; copulation, with sperm transfer, lasts for several minutes. Females normally mate only once and then reject further advances from males, while males mate multiple times. A volatile semiochemical that is deposited by females on their eggs attracts other gravid females and leads to clustered egg deposition.
The larvae depend on warmth and sufficient moisture to develop; generally, the warmer the temperature, the faster they will grow. In general, fresh swine and chicken manure present the best conditions for the developing larvae, reducing the larval period and increasing the size of the pupae. Cow, goat and horse manure produce fewer, smaller pupae, while fully composted swine manure, with a water content of under 40%, produces none at all. Pupae can range from about 8 to 20 milligrams (0.0003 to 0.0007 ounces) under different conditions.
The life cycle can be completed in seven to ten days under optimal conditions but may take up to two months in adverse circumstances. In temperate regions, there may be twelve generations per year, and in the tropics and subtropics, more than twenty.
5 Ecology
Houseflies play an important ecological role in breaking down and recycling organic matter. Adults are mainly carnivorous; their primary food is animal matter, carrion and faeces, but they also consume milk, sugary substances, and rotting fruit and vegetables. Solid foods are softened with saliva before being sucked up. They can be opportunistic blood feeders. Houseflies have a mutualistic relationship with the bacterium Klebsiella oxytoca which can live on the surface of housefly eggs and deter fungi which compete with the fly larvae for nutrients.
Adult houseflies are diurnal and rest at night. If inside a building after dark, they tend to congregate on ceilings, beams and overhead wires, while out of doors, they crawl into foliage or long grass, or rest in shrubs and trees or on wires. In cooler climates, some houseflies hibernate in winter, choosing to do so in cracks and crevices, gaps in woodwork and the folds of curtains. They arouse in the spring when the weather warms up, and search out somewhere to lay their eggs.
Houseflies have many predators including birds, reptiles, amphibians, various insects and spiders. The eggs, larvae and pupae have many species of stage-specific parasites and parasitoids. Some of the more important are the parasitic wasps Muscidifurax uniraptor and Sphalangia cameroni; these lay their eggs in the fly larvae tissue and their offspring complete their development before the adult flies can emerge from the pupae. Hister beetles feed on housefly larvae in manure heaps and the predatory mite Macrocheles muscae domesticae consumes housefly eggs, each mite eating twenty eggs per day.
Houseflies sometimes carry phoretic (non-parasitic) passengers including mites such as Macrocheles muscaedomesticae, and the pseudoscorpion Lamprochernes chyzeri.
The pathogenic fungus Entomophthora muscae causes a fatal disease in houseflies. After infection, the fungal hyphae grow throughout the body killing the fly in about five days. Infected flies have been known to seek high temperatures that could suppress the growth of the fungus. Affected females tend to be more attractive to males but the fungus-host interactions have not been fully understood. The housefly also acts as the alternative host to the parasitic nematode Habronema muscae that attacks horses.
6 Relationship with humans
Flies are a nuisance, disturbing people at leisure and at work, but it is principally because of their habits of contaminating foodstuffs that they are disliked. They alternate between breeding and feeding in dirty places with feeding on human foods, during which process they soften the food with saliva and deposit their faeces, creating a health hazard. However, fly larvae are as nutritious as fish meal, and could be used to convert waste to feed for fish and livestock.
Flies have been used in art and artefacts in many cultures. In 16th and 17th century European vanitas paintings, flies sometimes occur as Memento mori. They may also be used for other effects as in the Flemish painting, the Master of Frankfurt (1496). Fly amulets were popular in ancient Egypt.
6.1 As a disease vector
Houseflies can fly for several miles from the breeding place, carrying a wide variety of organisms on their hairs, mouthparts, vomitus and faeces. Parasites carried include cysts of protozoa, e.g. Entamoeba histolytica, Giardia lamblia and eggs of helminths, e.g., Ascaris lumbricoides, Trichuris trichiura, Hymenolepis nana, Enterobius vermicularis. Houseflies do not serve as a secondary host or act as a reservoir of any bacteria of medical or veterinary importance, but they do serve as mechanical vectors to over a hundred pathogens, such as those causing typhoid, cholera, salmonellosis, bacillary dysentery, tuberculosis, anthrax, ophthalmia and pyogenic cocci, making them especially problematic in hospitals and during outbreaks of certain diseases. Disease-carrying organisms on the outer surface of the fly may survive for a few hours, but those in the crop or gut can be viable for several days. There are usually too few bacteria on the external surface of the flies (except perhaps for Shigella) to cause infection and the main routes to human infection are through the fly's regurgitation and defecation.
In the early twentieth century, Canadian public health workers believed that the control of flies was important in controlling the spread of tuberculosis. A "swat that fly" contest was held for children in Montreal in 1912. Flies were targeted in 1916, when a polio epidemic broke out in the eastern United States. The belief that fly control was key to disease control continued, with extensive use of insecticidal spraying, well until the mid 1950s, declining only after the introduction of Salk's vaccine. In China, Mao Zedong's Four Pests Campaign between 1958 and 1962 exhorted the people to catch and kill flies, along with rats, mosquitoes and sparrows.
6.2 In warfare
During the Second World War, the Japanese worked on entomological warfare techniques under Shir? Ishii. Japanese Yagi bombs developed at Pingfan consisted of two compartments, one with houseflies and another with a bacterial slurry that coated the flies prior to release. Vibrio cholerae, which causes cholera, was the choice and used in China in Baoshan in 1942, and in northern Shandong in 1943. Baoshan had been used by the Allies and bombing produced epidemics that killed 60,000 people in the initial stages reaching a radius of 200 km, which finally took a toll of 200,000 victims. The Shandong attack killed 210,000; the occupying Japanese troops had been vaccinated in advance.
6.3 In waste management
The ability of housefly larvae to feed and develop in a wide range of decaying organic matter is important for recycling of nutrients in nature. This could be exploited to combat ever-increasing amounts of waste. Housefly larvae can be mass-reared in a controlled manner in animal manure, reducing the bulk of waste and minimizing environmental risks of its disposal. Harvested maggots may be used as feed for animal nutrition.
6.4 Control
Flies can be controlled, at least to some extent, by physical, chemical or biological means. Physical controls include screening with small mesh or the use of vertical strips of plastic or strings of beads in doorways to prevent entry of flies into buildings. Fans to create air movement or air barriers in doorways can deter flies from entering, and food premises often use ultra-violet light traps that electrocute insects. Sticky fly papers hanging from the ceiling can also be effective. Another approach is the elimination as far as possible of potential breeding sites. Keeping garbage in lidded containers and collecting it regularly and frequently, prevents any eggs laid from developing into adults. Unhygienic rubbish tips are a prime fly-breeding site, but if garbage is covered by a layer of earth, preferably daily, this can be avoided.
Insecticides can be used. Larvicides kill the developing larvae but large quantities may need to be used to reach areas below the surface. Aerosols can be used in buildings to "zap" flies, but outside applications are only temporarily effective. Residual sprays on walls or resting sites have a longer lasting effect. Many strains of housefly have become immune to the most commonly used insecticides.
Several means of biological pest control have been investigated. These include the introduction of another species, the black soldier fly (Hermetia illucens), whose larvae compete with those of the housefly for resources. The introduction of dung beetles to churn up the surface of a manure heap and render it unsuitable for breeding is another approach. Augmentative biological control by releasing parasitoids can be used, but flies breed so fast that the natural enemies are unable to keep up.
6.5 In science
The ease of culturing houseflies, and the relative ease of handling them when compared to the fruit fly Drosophila, have made them useful as model organism for use in laboratories. The American entomologist Vincent Dethier, in his humorous To Know A Fly (1962), pointed out that as a laboratory animal, houseflies did not trouble anyone sensitive to animal cruelty. Houseflies have a small number of chromosomes, haploid six or diploid twelve. Because the somatic tissue of the housefly consists of long-lived post-mitotic cells, it can be used as an informative model system for understanding cumulative age-related cellular alterations. Oxidative DNA damage 8-hydroxydeoxyguanosine (8-OHdG) in houseflies was found in one study to increase with age and reduce life expectancy supporting the hypothesis that oxidative molecular damage is a causal factor in senescence (aging).
The housefly is an object of biological research, partly for their variable sex determination mechanism. Although a wide variety of sex determination mechanisms exist in nature (e.g. male and female heterogamy, haplodiploidy, environmental factors), the way sex is determined is usually fixed within a species. The housefly is, however, thought to exhibit multiple mechanisms for sex determination, such as male heterogamy (like most insects and mammals), female heterogamy (like birds) and maternal control over offspring sex. The exact mechanism of sex determination involved is unresolved, but sexual differentiation is controlled as in other insects by an ancient developmental switch, doublesex, which is regulated by the transformer protein in many different insects. The antimicrobial peptides produced by housefly maggots are of pharmacological interest.
In the 1970s, the aircraft modeller Frank Ehling constructed miniature balsa wood aircraft powered by live houseflies. Studies of tethered flies have helped in the understanding of insect vision, sensory perception and flight control.
6.6 In literature
The Impertinent Insect is a group of five fables, sometimes ascribed to Aesop, concerning an insect, in one version a fly, which puffs itself up to seem important. In the Biblical fourth plague of Egypt, flies represent death and decay, while the Philistine god Beelzebub's name may mean "lord of the flies". In Greek mythology, Myiagros was a god who chased away flies during the sacrifices to Zeus and Athena; Zeus sent a fly to bite Pegasus, causing Bellerophon to fall back to Earth when he attempted to ride the winged steed to Mount Olympus. In the traditional Navajo religion, Big Fly is an important spirit being.
William Blake's 1794 poem "The Fly", part of his collection Songs of Experience, deals with the insect's mortality, subject to uncontrollable circumstances, just like humans. Emily Dickinson's 1855 poem "I Heard a Fly Buzz When I Died" speaks of flies in the context of death. In William Golding's 1954 novel Lord of the Flies, the fly is however a symbol of the children involved.
Ogden Nash's humorous two line 1942 poem "God in His wisdom made the fly/And then forgot to tell us why." indicates the debate about the value of biodiversity, given that even those considered by humans as pests have their place in the world's ecosystems.
7 References
8 Further reading
- West, Luther S. (1951). The Housefly. Its natural history, medical importance, and control (PDF). New York: Comstock Publishing Company.
9 External links
- The house-fly, Musca domestica Linn. : its structure, habits, development, relation to disease and control by C. Gordon Hewitt (1914)
- How to control house and stable flies without using pesticides. Agriculture Information Bulletin Number 673
- House fly on the UF/IFAS Featured Creatures Web site
- The House Fly and How to Suppress It, by L. O. Howard and F. C. Bishopp. U.S. Department of Agriculture Bulletin No. 1408, 1928, from Project Gutenberg.
Source of the article : Wikipedia